

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

RCP API DEVELOPMENT GUIDE
REVISION HISTORY

REV. ECO NO. DATE DESCRIPTION

A 008001 01/04/14 Formal document release.

B 008198 05/16/14
Updated for RCP parameter set 5.1. Added new API functions: rcp_set_uint(),
rcp_send(), and rcp_api_get_version

B1 008209 05/16/14 Recreated PDF. No content change.

C 008646 09/05/14
Updated for RCP parameter set 6.0. Added callbacks for new data types.
Added ability to customize the API build. Added new parameter properties.

D 009408 04/08/15
Updated for RCP parameter set 6.10. Added many parameters. Added
rcp_set_xx_relative functions.

E 009842 07/23/15
Updated for RCP parameter set 6.20. Added two application supplied
functions, one composite parameter and hardware dependency section. See
API change log for details of some function prototype changes.

F 010194 10/29/15
Updated for RCP parameter set 6.30. Added file transfer functions. Added new
client provided functions.

F1 010231 11/05/15 Corrected typo in footer.

G 010779 04/08/16
Updated for USER pass-through commands, several bug fixes, and proxy
codec recording support.

H 011982 05/24/17
Updated for parameter set 6.50 adds user metadata, periodic data control, and
amalgamation of files.

CONFIDENTIAL AND PROPRIETARY

This document and the information contained herein is confidential and proprietary, and is contractually
protected from disclosure. Distribution other than by written agreement is prohibited.

DOCUMENT IS UNCONTROLLED IF PRINTED OR DOWNLOADED. VERIFY REVISION BEFORE USE.

1 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

TABLE OF CONTENTS

DISCLAIMER 4

COPYRIGHT NOTICE 4
TRADEMARK DISCLAIMER 4

OBJECTIVE 5

SCOPE 5

SUPPORTING DOCUMENTS 5

CONVENTIONS USED 5

INTRODUCTION 6

API OVERVIEW 6

SDK COMPONENENTS 6
PHILOSOPHY OF USE—HOW TO USE IT CORRECTLY 7
MESSAGE TYPES 7
RCP IS ASYNCHRONOUS 7
DRIVE THE UI FROM CURRENT MESSAGES 7
THE CAMERA DATA IS KING 8
THE API CACHES DATA 8
THE API MANAGES HARDWARE DEPENDANCIES 8
PHYSICAL CONNECTION TO CAMERA 8
CAMERA DISCOVERY 9
CONNECTION CREATION 10
CONNECTION ERROR CONDITIONS 12
CALLBACK FUNCTIONS 13

DATA MANAGEMENT 14

DATA TYPES 14
SETTING/GETTING CAMERA PARAMETERS 14
RCP PARAMETER PROPERTIES 15
RCP PARAMETER PROPERTIES STRUCTURE 15
DISPLAY STRINGS 16
DECORATED STRINGS 17
DECODED STRINGS 18
LISTS 18
RCP_GET_LIST() 19
RCP_SET_LIST() 20
REDCODE EXAMPLE 20
COMPOSITE PARAMETERS 21
PERIODICALLY UPDATED PARAMETERS 23

2 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

PARAMETER STATUS 23
NOTIFICATIONS 23
MENUS 24

FILE TRANSFER 25

FILE SYSTEM 26
DIRECTORY LISTING FORMAT 26
THUMBNAIL FORMAT 26
FILE TRANSFER FUNCTIONS 27
STATUS CALLBACK 27
FILE COMPRESSION 27
USER METADATA 28

APPLICATION PROVIDED FUNCTIONS 28

WRAPPER FOR JAVA 29

SDK FOLDER STRUCTURE 29

API BUILD CONFIGURATION 30

BYPASSING THE API 31

ACCESSING RCP IN THE CAMERA 32

VIA SERIAL PORT 32
VIA GIGE 33
VIA WIFI 34

3 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

DISCLAIMER
RED® has made every effort to provide clear and accurate information in this document, which is provided
solely for the user’s information. While thought to be accurate, the information in this document is provided
strictly “as is” and RED will not be held responsible for issues arising from typographical errors or user’s
interpretation of the language used herein that is different from that intended by RED. All safety and general
information is subject to change as a result of changes in local, federal or other applicable laws.

RED reserves the right to revise this document and make changes from time to time in the content hereof
without obligation to notify any person of such revisions or changes. In no event shall RED, its employees or
authorized agents be liable to you for any damages or losses, direct or indirect, arising from the use of any
technical or operational information contained in this document.

For comments or questions about content in this document please send a detailed email to
rcpsdk@red.com.

COPYRIGHT NOTICE
© 2017 RED.COM, INC.

All trademarks, trade names, logos, icons, images, written material, code, and product names used in
association with the accompanying product are the copyrights, trademarks or other intellectual property
owned and controlled exclusively by RED.COM, INC. For a comprehensive list, please see
www.red.com/trademarks.

TRADEMARK DISCLAIMER
All other company, brand and product names are trademarks or registered trademarks of their respective
holders. RED has no affiliation to, is not associated or sponsored with, and has no express rights in third-
party trademarks. Android is a trademark of Google Inc. IOS is a registered trademark of Cisco in the U.S.
and other countries and is used under license. LEMO is a registered trademark of LEMO USA. Linux is a
registered trademark of Linus Torvalds in the U.S. and other countries. OS X is a registered trademark of
Apple Inc. in the U.S. and other countries. Qt is a registered trademark of The Qt Company Ltd. and/or its
subsidiaries. Windows is a registered trademark of Microsoft Corporation.

4 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

mailto:rcpsdk@red.com
http://www.red.com/trademarks

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

OBJECTIVE
The purpose of this document is to describe the structure and usage of the RED Command Protocol (RCP)
Application Programming Interface (API). The API is provided to abstract certain complex aspects of using
RCP into more atomic operations. This document covers the high-level usage and key concepts of the API. It
is not intended as detailed documentation of the API function calls or the structure of RCP itself. That
information is found in other documents listed in the RCP SDK Documents table below.

SCOPE
RCP parameter set 6.50 is only supported in firmware build 6.4.x and beyond. Therefore, parameters added
as of set 6.50 are only applicable to DSMC2 cameras. Refer to the rcp_param_t type definition in rcp_api.h
for details of which parameter set any given parameter was added.

SUPPORTING DOCUMENTS
This document is part of the RCP Software Development Kit (SDK), which contains other supporting
documents.

RCP SDK DOCUMENTS

RCP SDK DOCUMENTS

DOCUMENT DESCRIPTION

RCP API Development Guide This document.

RED Command Protocol: Reference Guide Documentation of RCP Core protocol and parameters.

RCP SDK Source and Reference Applications

Zip archive of:
SDK API and Core source code
Example iOS Application

Application for iPhone using the API. Source only.
Example Android™ Application

Application for Android using the API. Source only.
Example PC Application

Qt® based Windows® and OS X® example application for
camera remote control using the API. Source and executable.

Example RCP Core Application
Qt based Windows and OS X example application using only
the core functions of RCP, not the API. Source and executable.

CONVENTIONS USED
This document uses hyperlinks to facilitate locating a topic that is usually discussed in a later section. These
appear as red text.

The courier font is used for literal names or symbols taken from the code and in code snippets.

The term “PC” refers to a desktop or laptop type computer running Windows, OS X, or Linux®.

5 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

INTRODUCTION
The RCP API is for use by programmers to interface their applications with a RED DSMC® camera for status
and control. This API generates and processes the low level RCP packets, allowing you to operate more
naturally at the data level. Direct use of the RCP Core is still available, but the API and its documentation are
meant to supplant using RCP directly.

The latest version of the REDMOTE® firmware uses the RCP API.

Throughout this document references are made to specific function calls and data types. This document
does not go into details of the calls or data types. The detailed documentation of these is found in the auto-
generated documentation in an html format. Use a browser to open the index.html file in the /rcp_api/doc
folder.

API OVERVIEW

SDK COMPONENENTS
The API is a portion of the full RCP Software Development Kit (SDK). The API is built on top of, and requires
the use of the RCP Core, also provided in the RCP SDK. The Core is still fully available to an application, but
its direct use is discouraged except as described in later sections for use of the cList module. The RCP SDK
source code is delivered as a zip archive of several folders. The figures 1 and 2 show the preferred usage of
the SDK for C/C++ and Java applications. Other languages are not directly supported at this time. If using a
language other than C, C++, or Java, it is highly recommended to create a wrapper for the API rather than
trying to recreate the functionality from scratch. This will greatly ease the incorporation of updates to the
SDK at a later time.

Figure 1. SDK and Application Relationship for C and C++

6 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

Figure 2. SDK and Application Relationship for Java

PHILOSOPHY OF USE — HOW TO USE IT CORRECTLY
The main purpose of the API is to encapsulate key concepts for using RCP correctly, but it is still possible to
ignore these concepts and/or bypass the API. Some key things to keep in mind regarding RCP and the API
are presented in the following sections.

MESSAGE TYPES
RCP is based around three essential message types: SET(and SET_LIST, SET_RELATIVE,
SET_LIST_RELATIVE), GET(and GET_LIST), and CURRENT(and CURRENT_LIST). These are used respectively
to send a value to the camera, request a value from the camera, and send a value from the camera. Various
data types from a simple number to complex structures are supported and the API provides functions to
facilitate their use. See the RED Command Protocol: Reference Guide document for further details on the
underlying protocol.

RCP IS ASYNCHRONOUS
RCP is not a command/acknowledge type of protocol. Agents using RCP can send messages anytime as
needed. Sending a SET command to the camera does not result in an acknowledgement of receipt or
execution. Executing the SET request generates a CURRENT response if the SET changes a value. You
should not wait on a CURRENT message as an indication of any action happening because one may not
come.

DRIVE THE UI FROM CURRENT MESSAGES
Camera parameters can be changed in other ways than just SET messages from the application. Changing
settings directly on the camera user interface (UI), automatic operations in the camera, or another
application also using RCP can change (or modify) them. This means that CURRENT messages can be
generated independently of the application. Therefore, the application UI and processing should be driven

7 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

by CURRENT messages from the camera. For example, do not do things like turn the record indicator on
because the user pressed the record button. Instead, send out a message to toggle record in response to
the user pressing the record button and turn the record indicator on in response to a CURRENT message

from the camera indicating the record state is now RECORD_STATE_RECORDING.

THE CAMERA DATA IS KING
For parameters that are displayed to the user as a list of options to select, do not hard code the list in the
application. Instead, the list should be retrieved using the GET_LIST command. This is to ensure the proper
list is presented to the user based on camera type or other camera settings. It is also important to do this as
late as possible when needed since the list may change dynamically. For example, get the list when the user
tries to open a drop down not when the UI is initialized.

The camera provides display strings for most camera parameters. When available use the display string sent
from the API to display values to the user rather than creating strings manually using the integer value. This
will help ensure your application displays values the same way as the camera UI and help keep your
application future proof.

THE API CACHES DATA
By default, the API caches all data that can be cached. What this means is that as CURRENT messages are

received, the API stores the values as well as forwarding them to the application. When an rcp_get() call
is made, if the API has the latest value for the requested parameter, no GET message is actually sent.
Instead the API immediately calls the appropriate application call back function with the cached value. This
is particularly useful for applications that jump across tabs or views. They can be refreshed very quickly with
minimal traffic to the camera. Internally, the API manages which parameters may be cached and the
management of that data. The application should not cache any data sent from the API, instead it should
rely on the API caching for efficiency.

To allow a smaller memory usage footprint, the caching feature can be disabled at build time. See API Build
Configuration for this and other options.

An important exception to note is that the API does not cache thumbnail data. It is the job of the application
to follow a best practices policy of caching thumbnails to avoid repeated transfers of large amounts of data.

THE API MANAGES HARDWARE DEPENDANCIES
The API maintains knowledge of hardware related features and allows the application to check this using the
rcp_get_is_supported() function. The return for a given parameter is based on firmware version,
hardware type, and connected accessories. Always use this feature for determining what should be
presented to the user. Do not try to make this determination by other means.

PHYSICAL CONNECTION TO CAMERA
A camera connection is a point-to-point connection used to control and/or monitor the status of a given
camera. The physical connection to a camera may be over serial port, wired gigabit Ethernet, or WiFi. The
application must provide the creation and management of that connection. The API abstracts the camera

connection by requiring the application to provide the callback function send_data_to_camera_cb() for
the API to transmit to the camera. The API is completely connection agnostic.

8 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

The reception of data from the camera is managed directly in the application and requires the received data

to be passed to the API in the call rcp_process_data().

CAMERA DISCOVERY
In a network environment there may exist several cameras that can be connected to using the API. If the
cameras have R.C.P. Bridges, it is possible there are multiple network capable interfaces even with just one
camera. The Camera Discovery portion of the API is used to find and enumerate all the interfaces on the
same sub network as the controlling application. This is not applicable to cameras connected by serial port.
It is also an optional step. If the camera’s IP address is already known this can be bypassed.

Discovery is implemented using broadcast UDP packets (on port 1112). The application must provide the call

back rcp_broadcast_data_to_cameras_cb() to perform the UDP broadcasts. It is good practice to
make sure you broadcast UDP packets out all the network interfaces on your device. In a separate thread, all

incoming UDP data on port 1112 should be sent to the API via the rcp_discovery_process_data()
function. Starting with RCP parameter set 6.0, the application must extract the interface’s IP address from

the UDP response header and pass that to the rcp_discovery_process_data() function along with the
data from the UDP response. The data returned by the camera now also includes an enum of the interface
that owns that IP address. This will be in the discovery list data. The application can then differentiate
between a wireless connection to an R.C.P. Bridge and a wired Ethernet connection on the same camera.
Note that the location of the IP address in the discovery list data has moved. Check the auto generated
documentation for details.

Psuedocode of one way to discover all the cameras on the network is shown below. It is possible the
application may also continuously look for cameras and periodically provide an updated list. Figure 3 shows
the interactions of the discovery process in a sequence diagram.

rcp_discovery_start()

rcp_discovery_process_data() for any received responses

delay(RCP_DISCOVERY_STEP_SLEEP_MS milliseconds)

loop (RCP_DISCOVERY_STEP_LOOP_COUNT times)

rcp_discovery_step()

rcp_discovery_process_data() for any received responses

delay(RCP_DISCOVERY_STEP_SLEEP_MS milliseconds)

end_loop

rcp_discovery_get_list()

copy(data in list to local memory)

rcp_discovery_free_list()

rcp_discover_end()

9 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

Figure 3. Discovery Process Sequence

CONNECTION CREATION
When creating a camera connection, the physical connection to the camera must first be established. Once

this is done a call to rcp_create_camera_connection() may be made. When creating the connection, a
number of callback functions must be provided to allow the API to communicate information back to the

application code. See rcp_camera_connection_info_t for the list of callbacks required. That structure

must be populated before calling rcp_create_camera_connection(). The
send_data_to_camera_cb() callback will be used to send data out to the connected camera. It is the
application’s responsibility to send this data out the appropriate serial port or TCP/IP socket. Furthermore,

all incoming data from the camera on the connection must be sent to the API via the rcp_process_data()
function, passing in the camera connection object (which is returned from
rcp_create_camera_connection()). Note that with multiple instances of camera connection objects

(rcp_camera_connection_t) it is possible to connect to more than one camera (or interface) concurrently.

Application API

rcp_discovery_start()

rcp_broadcast_data_to_camera_cb()

Network

UDP Broadcast

CAMINFO Response
rcp_discovery_process_data()

CAMINFO Response
rcp_discovery_process_data()

CAMINFO Response
rcp_discovery_process_data()

Delay
RCP_DISCOVERY_STEP_SLEEP_MS

rcp_broadcast_data_to_camera_cb()
UDP Broadcast

CAMINFO Response
rcp_discovery_process_data()

Delay
RCP_DISCOVERY_STEP_SLEEP_MS

Loop RC_DISCOVERY_STEP_LOOP_COUNT times

rcp_discovery_get_list()

Copy list to application data space

rcp_discovery_free_list()

rcp_discovery_end()

Multiple responses are
possible, each causing a
rcp_discover_process_data()
call

rcp_discovery_step()

10 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

After creating a camera connection do not send any get or set requests to the camera until after the
RCP_CONNECTION_STATE_CONNECTED state has been reached. The callback state_cb() is used by the
API to report the connection state. Assuming a successful connection, this is where the application would
begin communication with the camera. Unsuccessful connection conditions are discussed in the next
section.

Figure 4. Camera Connection Sequence

Once a camera connection is established the camera continuously sends out CURRENT messages, which in
turn result in the appropriate callback calls being made to the application. For example, if the user changes
the ISO parameter using the camera UI from 800 to 1000 the application will receive an integer type callback

with the parameter RCP_PARAM_ISO, value of 1000, and an appropriate string to display (in general it is best

Application API

state_cb(RCP_CONNECTION_STATE_INIT)

Camera

G:RCPVER

C:RCPVER
rcp_process_data()

rcp_get(RCP_PARAM_ISO)

rcp_create_camera_connection()

rcp_send_data_to_camera_cb(
 RCP_PARAM_RCP_VERSION)

Camera IP determined possibly by discovery process, or serial port selected

Establish physical connection

Populate callback structure

G:RCPPSVER

C:RCPPSVER
rcp_process_data()

rcp_send_data_to_camera_cb(
 RCP_PARAM_RCP_PARAMETER_SET_VERSION)

state_cb(
 RCP_CONNECTION_STATE_CONNECTED)

Both versions
test as
compatible with
API

rcp_send_data_to_camera_cb(RCP_PARAM_ISO)
G:ISO

C:ISO
rcp_process_data()

cur_int_cb()

At this point the application may start sending set and get requests

11 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

to use this string generated by the API rather than creating your own from the integer value of the

parameter). Periodic data is also continuously sent from the camera (such as RCP_PARAM_TIMECODE,
RCP_PARAM_POWER_VAL, etc.) without being triggered by a GET or SET. Figure 4 shows the connection
sequence.

The version of the API itself is available as a string from the call rcp_get_api_version(). This can be
useful in an informational page of the application.

Starting with RCP version 6.0, connection statistics are available. The function
rcp_camera_connection_stats() can be called to fill a structure with the number of transmitted
packets and total bytes and received packets and total bytes. Values are totals since the connection was
established.

CONNECTION ERROR CONDITIONS
Several error conditions are possible when making a connection to the camera.

 An error occurs at the network (or serial port) level creating the physical connection. This must be
detected and handled by the application code.

 An error occurs at the network (or serial port) level creating the camera connection. This could indicate

an error in the send_data_to_camera_cb() callback provided by the application. The API does not
access the physical connection. The application must detect these conditions and have the callback

return an RCP_ERROR_SEND_DATA_TO_CAM_FAILED error code. The API will subsequently set the

connection state to RCP_CONNECTION_STATE_COMMUNICATION_ERROR. This is applicable at any point
there are errors in the physical communication such as loss of connection.

 A successful connection is made, but periodic CURRENT messages never come and the camera does
not respond to SET or GET requests. Verify that the Enable External Control check box is set if using
Ethernet access, or that the RED Command Protocol is selected if using serial port. The application
should be able to detect this by checking for a timeout on reception of periodic data such as the
temperature that should be received once per second.

 The API reports the connection state as either
RCP_CONNECTION_STATE_ERROR_RCP_VERSION_MISMATCH or
RCP_CONNECTION_STATE_ERROR_RCP_PARAMETER_SET_VERSION_MISMATCH. The application must

destroy the connection by calling rcp_delete_camera_connection() and destroying any physical
connection structures as needed. The application should also alert the user that either the camera or the
application might need updating.

 The API reports the connection state as RCP_CONNECTION_STATE_COMMUNICATION_ERROR. The
application must delete the camera connection and destroy the physical connection. The deletion of the
connection in response to the error state should only be performed from the state_cb() call. The
application might then choose to try to re-establish the physical connection and recreate the API
connection without notifying the user, possibly some limited number of attempts. If this error happens
while trying to create the connection, the user should probably be notified that connection cannot be
made.

12 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

Figure 5. Correct Connection Error Recovery Sequence

CALLBACK FUNCTIONS
Callback functions provide a way for the API to have the application do work for it (send data to the camera)
or to notify the application of some event (CURRENT message data available or state change). There is one
callback for sending data, one for UDP broadcast, one for signaling connection state, and one each for the
various return data types. The application must create and provide the callbacks. With the exception of the

UDP broadcast callback (rcp_broadcast_data_to_camera_cb()), callback function address and data

are all defined in the structure of type rcp_camera_connection_info_t. The application must allocate

and populate this structure to be passed in the rcp_create_camera_connection() call. Each callback
allows for a pointer to data to be sent when the API calls the callback. For example, the
rcp_send_data_to_camera_cb() could put a pointer to the socket it created for the physical connection.
Then when the API calls the callback, it sends that pointer as one of the parameters of the call and the
application can access the appropriate socket. This is especially useful if the application is managing
multiple camera connections.

Note that throughout this document the callback functions are referred to by the names in the
rcp_camera_connection_info_t structure. These are really just the names of pointers to the callbacks
and the application may choose other names as desired.

Application API

Error returned

rcp_send_data_to_camera_cb()

Physical connection to camera has
been lost while communicating

Socket error is detected

rcp_delete_camera_connection()

state_cb()

At this point the application may notify the
user and/or attempt to reconnect

Change connection state to
RCP_CONNECTION_STATE_COMMUNICATION_ERROR

Destroy physical connnection

13 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

DATA MANAGEMENT

DATA TYPES
The API is used to set and get the values of camera parameters, which are uniquely identified with the
rcp_param_t enum. Only parameters defined in rcp_param_t can be accessed.

The data associated with a parameter can be one of several types. The possible types are integer, unsigned
integer, list, histogram, string, tag, and clip list. Set operations are only needed for integer and string types.
Legal values for a parameter either come from an enumerated type in the header file
rcp_types_public.h, or by parsing lists of values sent from the camera.

Data returning from the camera are handled with callbacks unique to the data type. These are the

application supplied callbacks send_data_to_camera_cb(), cur_int_cb(), cur_uint_cb(),
cur_list_cb(), cur_hist_cb(), cur_str_cb(), clip_list_cb(), cur_tag_cb(),

cur_status_cb(), notification_cb(), cur_audio_vu_cb(), cur_menu_cb(),
cur_menu_node_status_cb(), rftp_status_cb(), handle_user_set_cb(),

handle_user_get_cb(), handle_user_current_cb(), handle_user_metadata_cb(),

cur_default_int_cb(), cur_default_uintc_cb(), cur_action_list_cb(),

cur_key_mapping_cb() and state_cb() defined in the rcp_camera_connection_info_t.

SETTING/GETTING CAMERA PARAMETERS
Once a camera connection has been established, parameters on the camera are changed by calling the
appropriate function call for the parameter type. Do not assume the value sent will automatically take effect
on the camera - there could be conditions that prohibit your setting from taking effect. Instead, display any
new values to the user if and when the appropriate current value callback is called.

For example, to toggle record on the camera you can call

rcp_set_int(con, RCP_PARAM_RECORD_STATE, SET_RECORD_STATE_TOGGLE);

However, do not indicate recording on the application until an incoming CURRENT for
RCP_PARAM_RECORD_STATE with the value of RECORD_STATE_RECORDING has been received.

rcp_send() is new with version 5.1 and essentially performs a SET but is used for parameters without a
value field, whose mere reception causes some action to be performed. The SHUTDOWN parameter would

be an example of this. The API validates the payload for parameters in an rcp_set_type() call, so its not
possible to use it for a valueless parameter. Passing in even a dummy value for something like SHUTDOWN,
which does not take a value, will result in no message being sent to the camera.

When prompting the user to select a new value for a parameter (say ISO), the correct process is to request
the list of available values from the camera (rather than hard-coding this list - which may change - in the

application). Use rcp_get_list() to request the list. The list is returned in the rcp_cur_list_cb()
callback. Each item in the list is a tuple of {integer value, string}. The string should be presented to the user,

and the corresponding integer value is used in a rcp_set_int() if that entry is selected. With this model,
the application code doesn't know or care how any of the parameter data is stored and interpreted by the
camera. Some lists can be edited and customized in the camera. Others may change based on other camera

14 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

settings (e.g. the sensor frame rate list is dependent on the current record format). Adhering to these
guidelines helps ensure your application will continue to work with future camera firmware upgrades.

The update-ability of some parameters can change as a function of camera operating mode. For example,

when recording, some settings may not be changed. The rcp_get_status() is used to check this
condition for a given parameter. If it returns false, then the application should not allow modifying the value

and possibly remove it from UI, or grey it out. The API will also push updates to the cur_status_cb()
when changes in a parameter’s status occur.

RCP PARAMETER PROPERTIES
There are five functions for getting properties of a parameter: rcp_get_label(),
rcp_get_update_list_only_on_close()(*deprecated as of RCP v6.x), rcp_get_is_supported(),

rcp_get_name(), and rcp_get_id(). These properties are a function of the parameters themselves and
not the state or value of the parameters in camera. The name and id properties are only intended to be used

when wrapping the API in another language where the rcp_param_t enum cannot be used directly.

 label: Human readable name of parameter (this can be used as a label in the UI). For example, the label

for RCP_PARAM_ISO is “Sensitivity”.

 update_list_only_on_close: (deprecated as of RCP version 6.x, use the update_list_only_on_close

flag in the cur_list() callback instead.) Some camera parameters take a non-trivial amount of time to
take affect in-camera (e.g. record format). In these cases, it is not advisable to set the new value as the
user is navigating through the list. This flag indicates whether the value should be updated while
navigating the list or only once the list has been closed. *Deprecated means it is no longer supported
and may be deleted in the future without warning.

 is_supported: Check if the given parameter is supported by the connected camera. This function uses
the camera’s RCP Parameter Set Version, camera hardware type and attached modules to determine if a
parameter is available. This should be used to conditionally show newer commands to the user when
connecting to older camera builds. As of RCP version 6.x, this call now also fills a structure of properties
about the parameter, requiring an additional parameter. If the properties are not required, NULL can be
passed in for this.

 name: Stringified version of the rcp_param_t enumerated value. For example the name for
RCP_PARAM_ISO is “RCP_PARAM_ISO”.

 id: Actual enumerated value looked up using the name. The id for “RCP_PARAM_ISO” is
RCP_PARAM_ISO.

RCP PARAMETER PROPERTIES STRUCTURE
A structure of the type rcp_param_properties_t is filled in by the rcp_get_is_supported() function.
This information can be used by the application to tailor how the parameter data is handled. It indicates
which kind of calls can be made for the parameter. Consult the auto-generated documentation for further
details.

15 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

PARAMETER PROPERTIES STRUCTURE

PARAMETER PROPERTIES STRUCTURE

NAME TYPE DESCRIPTION

name const char * Name of parameter

label const char * Label for parameter

has_get int If true, calls to rcp_get() are valid for this parameter

has_get_list Int If true, calls to rcp_get_list() are valid for this parameter

has_get_status Int If true, calls to rcp_get_status() are valid for this parameter

has_get_periodic Int If true, calls to rcp_get_periodic_on/off are valid for this parameter

has_send Int If true, calls to rcp_send() are valid for this parameter

has_set_int Int If true, calls to rcp_set_int() are valid for this parameter

has_set_int_relative Int If true, calls to rcp_set_int_relative() are valid for this parameter

has_set_uint Int If true, calls to rcp_set_uint() are valid for this parameter

has_set_uint_relative Int If true, calls to rcp_set_uint_relative() are valid for this parameter

has_set_str Int If true, calls to rcp_set_str() are valid for this parameter

has_set_list Int If true, calls to rcp_set_list() are valid for this parameter

has_set_list_relative Int If true, calls to rcp_set_list_relative() are valid for this parameter

has_display_str Int If true, there is a display string available for this parameter

has_edit_info int
If true, edit info exists for this parameter and will be supplied in the
cur_xxxx_callback()

update_list_only_on_close Int
If true, only set data once list is closed and not as the user scrolls through
the list (for the case where the parameter takes a long time to apply the
setting)

DISPLAY STRINGS
The API provides display strings to supply what is to be displayed by an application for a textual
representation in a user interface. These are provided in the structure returned by most of the
cur_<type>_cb() callbacks. Depending on the parameter they may be provided directly or extra calls may be
needed to get a list and then decipher the stringified list into usable strings. This feature is provided to avoid
the application having to know and understand the underlying implementations such as the enumerated type
values and logic in the cases of composite parameters. This also helps future proof the application from
changes in the camera implementation.

Two member variables of the return data structure indicate whether the string is supplied or must be fetched
with other calls.

 display_str_valid: if true, indicates the display string variables have valid strings. Otherwise there is
either no string for this parameter, or it must be fetched in a list.

 display_str_in_list: if true, indicates the rcp_get_list() call must be made for this parameter
and additional steps taken.

The display string is provided in four forms, decorated (display_str and display_str_abbr) and

decoded (display_str_decoded and display_str_abbr_decoded), explained in the next section.

There is also a display_str_status, which indicates a color to use. All of these are validated by the

16 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

display_str_valid variable. The abbreviated versions are often the same as the full string. Use of the full
string is preferred unless there are space constraints that justify using the abbreviated version. An example
of an abbreviated string would be the camera’s use of “RG3” in the histogram window instead of
“REDgamma3”.

The display strings can come from multiple callbacks depending on the parameter type. It might be tempting
to put code in those call backs to handle updating the application UI based on the parameter ID, but it is not
safe to assume the string will always come that way. For example, a string coming now in the
cur_int_cb() might at a later version of the API come from cur_str_cb(). Application specific design
should be minimized in the callbacks. It is a better design to simply always pass the string up to another
layer that encapsulates the application UI specific information. The supplied example programs are
structured this way, their structure should be taken as a best practices example for the application
architecture.

DECORATED STRINGS
Decorated strings are a way to indicate where special fonts or symbols should be used to mimic how the
camera displays some information. These use HTML style special characters in place of custom symbols.
For example the superscripted “1/” used in the exposure time display is represented by a “&red1over;”. So
the decorated display string for 1/48 of a second would be “&red1over;48&redsec;”. Decorator markup can
occur anywhere in the decorated string (not just be a prefix or suffix).

If the application platform can render the special symbols, the mapping is shown in the table below. The
application will need to provide the parsing of the decorated string and perform the symbol replacement.

DECORATED STRING MAPPING

DECORATED STRING MAPPING

DECORATOR MARKUP DISPLAY SYMBOL DESCRIPTION

&red1over; 1/ Small superscripted 1/

&redfover; f/ Small superscripted f/

&redsec; sec Small lowercase sec

&rediso; ISO Small uppercase ISO

&redkelvin; K Subscripted uppercase K

° ° Degree symbol

&redfps; FPS Small uppercase FPS

&redana2; White ANA above black 2 in white box

&redana13; White ANA above black 1.3 in white box

&redformatk; K Subscripted uppercase K

&redae; AE icon

&redav AV icon

& & Ampersand

&redcheck; Check mark

© © Copyright symbol

17 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

DECORATED STRING MAPPING

DECORATOR MARKUP DISPLAY SYMBOL DESCRIPTION

® ® Registered symbol

™ ™ Trademark symbol

DECODED STRINGS
Decoded strings use standard characters. If the application cannot or chooses not to use special symbols,
the decoded version can be used. The API returns both the decorated and decoded strings for the
cur_<type>_cb() callbacks, except for the cur_list_cb() callback.

The API provides methods to do the decoding so the application does not need to do the parsing and
replacement. For the curious, the mapping is shown in below table and can also be found in the source file
/decorated_string/decorated_string.c.

DECODED STRING MAPPING

DECODED STRING MAPPING

DECORATOR CHARACTER STANDARD CHARACTERS

&red1over; “1/”

&redfover; “f/”

&redsec; “ sec”

&rediso; “ISO “

&redkelvin; “K”

° “ deg”

&redfps; “ FPS”

&redana2; “ ANA 2”

&redana13; “ ANA 1.3”

&redformatk; “K”

&redae; “ AE”

&redav “ Av”

& “&”

&redcheck; “ Check”

© "(C)”

® “(R)”

™ “(TM)”

LISTS
Lists are the way in which the camera conveys the set of valid selections for a parameter and also indicate
the current target setting. The cList class provided in the RCP SDK handles the parsing of the list into a
current index selection and multiple pairs of numeric value and display strings. The string portion is what

should be displayed to the user, and the numeric portion is what should be sent in an rcp_set_int() call
for the list index selected by the user. The current index points to the value/string pair that is currently
selected as the target value. The “current” value in the list may not match the last display string sent in the
current_int_cb() callback. For example in the case of RCP_PARAM_REDCODE, the last display string

18 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

could be “RC 8:1 YELLOW” and the current value in the list is “RC 5:1”. This indicates the target of 5:1 could
not be achieved.

RCP_GET_LIST()
To get a list, the application should make an rcp_get_list() call for the parameter in question. The data

for the cur_list_cb() contains a string (list_string) that needs to be converted and an indication

whether the string is valid (list_string_valid). There are also the elements min_val and max_val,

qualified by min_val_valid and max_val_valid. If either is marked as valid, then they represent lower
and upper bounds outside which the value in the value/string pairs list entries should be shown in a different
color to indicate they are not available. The user should still be able to select values outside min to max as a

target setting and call rcp_set_xxxx() with the user selected value. With RCP version 6, the list call back

data now includes three properties send_int, send_uint, and send_str to indicate which
rcp_set_xxxx() function is the correct one to use. These are the same as provided by the
rcp_get_is_supported() function and provided to avoid extra function calls. The
update_list_only_on_close property is now also provided in the list call back data.

The current index and value/string pairs are retrieved by using the cList class methods
importStringList() (for decorated strings) or importStringListAndDecode() for decoded strings.

Pass these functions the string in list_string. The cList functions getNum() and getStr() can then be

used to get the value and display string for a given index. The function length() can be used to get the

number of elements in the list. The function getIndex() returns the current index.

If the data returned from rcp_get() for a parameter has the display_str_in_list element set, then
rcp_get_list() method must be used to get the display string for that parameter. The function
getCurrentStr() provides a single call to get the display string of the current index when the entire list
does not need to be shown. Figure 6 shows the interactions to do this for autofocus mode.

19 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

Figure 6. Getting Display String from List

RCP_SET_LIST()
Some parameters (those with the has_set_list property true) will allow their list to be modified directly with

the rcp_set_list() function. This function accepts a stringified c_list. Don’t assume the list will be
accepted by the camera. Always rely on the CURRENT messages for the camera’s values.

REDCODE EXAMPLE
Figure 7 shows the proper sequence for managing a control that uses a list. In this case the REDCODE
setting. Implementing this as shown in the example programs will provide robust, generalized code that can
be used for many of the parameters.

This example assumes the camera connection has already been established and that periodic data is being
handled at the same time. To simplify the drawing, the camera lifeline has been omitted and the
rcp_send_data_to_camera_cb() and rcp_process_data() calls are not shown.

Application APICamera

G:AFMODE

C:AFMODE
rcp_process_data()

rcp_get(RCP_PARAM_AF_MODE)

rcp_send_data_to_camera_cb(AFMODE)

importStringList(cb_data.list_string);

cur_int_cb(cb_data)

cb_data.cur_val_valid == true
cb_data.display_str_valid == false
cb_data.display_string_in_list == true

rcp_get_list(RCP_PARAM_AFMODE)

H:AFMODE

D:AFMODE

cur_list_cb(cb_data)

cb_data.list_str_valid == true

cList

Get current index with getCurrentStr();

rcp_send_data_to_camera_cb(AFMODE)

20 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

ApplicationAPI

rcp_get_label(RCP_PARAM_REDCODE)

cur_int_cb(cb_data)

rcp_get_list(RCP_PARAM_REDCODE)

cur_list_cb(cb_data)

“REDCODE”

RC 8:1

REDCODE
• Initialize the closed selector getting

the label and value from API.
• Use the string provided by API and

the color specified.
• Do not create display string from

numeric value.
• This should only get updated on

receiving CURRENT messages, not
from other UI interaction.

If NOT ulooc

Label is used for UI name

rcp_get(RCP_PARAM_REDCODE)
Use string and color
provided in callback

RC 3:1

RC 4:1

RC 5:1

RC 6:1

RC 7:1

RC 8:1

RC 9:1

rcp_get_update_list_only_on_close(RCP_PARAM_REDCODE)

Update_list_only_on_close (ulooc) property setting

• Open the selector and populate it
using either decorated or decoded
strings provided by cList.

• Always validate the presence of
min_val and max_val with
corresponding _valid fields.

• Show entries outside the range of
min_val to max_val in alternate
color.

• Do not use value or string from last
CURRENT to figure out which entry
to mark as selection. It can be
different. Current list selection will
match the target value which may
be different than value in use.

• Logic should not depend on the
parameter ID. Done properly, the
same code should handle any
parameter with similar UI.

• Do not cache any data. The API is
doing that for you.

• The API knows that REDCODE is
normally set as a target value and
takes care of that logic.

Import list_str into cList.
Use strings from value/string pairs to
fill selector
Use getIndex() from cList to find entry
in list as current selection

Loop until selector is closed

rcp_set(RCP_PARAM_REDCODE)

cur_int_cb(cb_data)

rcp_set(RCP_PARAM_REDCODE)

The user activates the
selector to make a new
choice

min_val

User makes a selection

Figure 7. REDCODE Selection and List Display Example

COMPOSITE PARAMETERS
Some parameters such as the media capacity or input power are shown in different formats depending on
various conditions. The media capacity is shown in percent or minutes. The power is shown in time
remaining or volts. These require the logical combination of multiple parameter values. That logic is
embedded in the camera, but the components are made available in RCP parameters. The appropriate logic
is embedded in the API and the application need only deal with a single data parameter. The API generates
the correct display string, getting other parameters as needed. This is another reason to always use the
display strings generated by the API.

There are twelve composite parameters shown in the table below with their component parameters. Use the
composite parameter instead of the components to get the display strings for these items.

RC 8:1

21 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

COMPOSITE PARAMETERS

COMPOSITE PARAMETERS

COMPOSITE PARAMETER USE INSTEAD OF THESE COMPONENTS

RCP_PARAM_MEDIA_DISPLAY_VAL

RCP_PARAM_MEDIA_VAL
RCP_PARAM_MEDIA_TIME_REMAINING
RCP_PARAM_MEDIA_DISPLAY_MODE
RCP_PARAM_RECORD_MODE

RCP_PARAM_POWER_DISPLAY_VAL
RCP_PARAM_POWER_VAL
RCP_PARAM_POWER_TIME_REMAINING
RCP_PARAM_POWER_DISPLAY_MODE

RCP_PARAM_MEDIA_DISPLAY_LABEL
RCP_PARAM_RECORD_MODE
RCP_PARAM_MEDIA_LABEL

RCP_PARAM_HDR_MODE
RCP_PARAM_RECORD_HDR_MODE
RCP_PARAM_PLAYBACK_STATE
RCP_PARAM_PLAYBACK_NUM_HDR_TRACKS

RCP_PARAM_HDR_MODE_DETAILED
RCP_PARAM_RECORD_HDR_MODE
RCP_PARAM_PLAYBACK_STATE
RCP_PARAM_PLAYBACK_NUM_HDR_TRACKS

RCP_PARAM_QUALITY
RCP_PARAM_REDCODE
RCP_PARAM_RECORD_FILE_FORMAT
RCP_PARAM_RECORD_VIDEO_CODEC

RCP_PARAM_ND_DISPLAY_VAL
RCP_PARAM_ND_VAL
RCP_PARAM_MM_MODE
RCP_PARAM_MM_ND_MODE

RCP_PARAM_EXPOSURE_DISPLAY
RCP_PARAM_SHUTTER_DISPLAY_MODE
RCP_PARAM_EXPOSURE_INTEGRATION_TIME
RCP_PARAM_EXPOSURE_ANGLE

RCP_PARAM_PLAYBACK_CLIP_DATE_TIME
RCP_PARAM_PLAYBACK_CLIP_DATE,
RCP_PARAM_PLAYBACK_CLIP_TIME

RCP_PARAM_RECORD_STATE
RCP_PARAM_RECORD_STATE_BASE
RCP_PARAM_RECORD_MODE
RCP_PARAM_TETHERED_SERVER_STATE

RCP_PARAM_PRORES_DIMENSION
RCP_PARAM_PRORES_WIDTH
RCP_PARAM_PRORES_HEIGHT

RCP_PARAM_MXF_DIMENSION
RCP_PARAM_MXF_WIDTH
RCP_PARAM_MXF_HEIGHT

SENSOR_DIMENSIONS_PHY
SENSOR_WIDTH_PHY
SENSOR_HEIGHT_PHY

FORMAT_WIDTH_PHY
SENSOR_WIDTH_PHY
FORMAT_WIDTH_PIXELS

FORMAT_HEIGHT_PHY
SENSOR_HEIGHT_PHY
FORMAT_HEIGHT_PIXELS

FORAMT_DIMENSIONS_PHY
FORMAT_WIDTH_PHY
FORMAT_HEIGHT_PHY

FORMAT_DIMENSIONS_PIXELS
FORMAT_WIDTH_PIXELS
FORMAT_HEIGHT_PIXELS

22 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

COMPOSITE PARAMETERS

COMPOSITE PARAMETER USE INSTEAD OF THESE COMPONENTS

SHADOW_FORMAT_WIDTH_PHY
SENSOR_WIDTH_PHY
SHADOW_FORMAT_WIDTH_PIXELS

SHADOW_FORMAT_HEIGHT_PHY
SENSOR_HEIGHT_PHY
SHADOW_FORMAT_HEIGHT_PIXELS

SHADOW_FORAMT_DIMENSIONS_PHY
SHADOW_FORMAT_WIDTH_PHY
SHADOW_FORMAT_HEIGHT_PHY

SHADOW_FORMAT_DIMENSIONS_PIXELS
SHADOW_FORMAT_WIDTH_PIXELS
SHADOW_FORMAT_HEIGHT_PIXELS

PERIODICALLY UPDATED PARAMETERS
The camera broadcasts various periodic data about its state at varying rates. This data starts coming as
soon as the physical connection to the camera is established. Even before calling
rcp_create_camera_connection(). Even though the connection has not been created, the application

must call rcp_process_data() for all received messages. The API needs incoming data to complete the
connection process. The API just does not make any callbacks until the connection is created.

The type of information that comes periodically includes timecode, histogram, gyro data, temperatures, fan
speeds, VU meter data, and battery level. As of parameter set 6.50, some data items do not come
automatically until they are enabled. Some other items are now only updated when they change. The

application may need to perform an initial call to rcp_get_periodic_on() to initialize its copy of these

items. Periodic sending can also be disabled with rcp_get_periodic_off(). Details of the update rates
are found in the RED Command Protocol: Reference Guide document.

If it is desired to ignore the histogram or VU meter and not have to process that data, set the respective

callback pointer to NULL. The histogram data still comes and the rcp_process_data() call still needs to
be made, but no callback happens.

PARAMETER STATUS
The API maintains the notion of whether a given parameter is available at any given time. For example
changing camera state such as record or playback can make some parameters unavailable for modification,
or changing fan mode to adaptive makes the manual record and preview speeds unusable. The function
rcp_get_status() can be used to query the status of any parameter. The application must provide a call

back, rcp_cur_status_cb(), for handling API generated change in status states. The intent is that the
application should change the presentation of affected parameter controls, by hiding them, or perhaps
greying them out and disable their selection.

NOTIFICATIONS
Events generated by the camera that require user attention are handled by notifications. In the camera,
these are pop-up dialogs that can either timeout on their own or require the user to make a selection or
explicitly dismiss them. When a notification occurs the camera will generate an RCP CURRENT message for
the parameter NOTIFY. The API supports notifications with three supplied functions:
rcp_notification_get(), rcp_notification_timeout(), and rcp_notification_response();

23 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

and one required application supplied callback: notification_cb(). This feature of the API is set up to
aid handling and management of notifications in a manner consistent with the camera’s operation. The
application must provide presentation of the notification, update the presentation and manage timeouts
based on data provided by the API in the callback function.

When a NOTIFY message is received from the camera, the API will call the application supplied callback with
a structure of data filled in containing an action to perform and details about the notification. The action can

be one of open, update or close defined in rcp_notification_action_t. The details will contain a
unique id used to relate response and timeout calls, a title, a message to be displayed, the type of progress
bar to be shown if any, progress percent if appropriate, a response list to be provided to user, and a timeout
in seconds or 0 if no timeout. Consult the auto-generated documentation for details.

It is possible for multiple notifications to be open at the same time. The camera assigns a UUID to each as
they are created and the API provides this in the callback data. This id becomes a parameter to the
rcp_notification_timeout() and rcp_notification_response(). The API will handle the
management of stacked up notifications, sending callbacks and handling responses until closed, one
notification at a time in order of arrival. The application only needs to support a single instance.

NOTIFICATION FUNCTION USAGE

NOTIFICATION FUNCTIONS

FUNCTION USE WHEN

notification_cb()
Called by the API when a notification is initiated by the camera, when an update is
needed (progress bar update), or when the notification is to be closed.

rcp_notification_response()
This function should be called when a user responds to a notification by selecting one
of the response options.

rcp_notification_timeout

This function should be called to notify the API that the timeout associated with the
current notification has expired and that the notification should be closed.
Note: this can also be called if the user dismisses a timeout based notification by
tapping on it (or other application specific appropriate action)
Note: the client code should wait until the API issues a CLOSE action on the current
notification before actually closing it

rcp_get_notification

This function will cause the notification callback to be re-called with the current
notification to be displayed (if there is one).
Note: this function doesn't usually need to be called. Only call it, if for some reason,
your application ignores notification callbacks until some specific time during
execution. Once your application is ready to handle the notification callbacks, call this
function one time.

MENUS
Starting with RCP parameter set version 6.0, the camera can supply all the information needed to navigate

and display the majority of the menu system. This is done using the rcp_menu_get_children() function.
The menu system is represented as a tree where every node is either a branch or a leaf. Branches will have
child nodes, which can be branches or leafs. The information for a leaf tells what kind of data element the
menu item represents and what is needed for display. How the application handles those tasks is left to the
developer, but node types are defined that represent the recommended methods. The tree root ID is a

special enum value of RCP_MENU_NODE_ID_ROOT, which equates to Menu button of the camera UI. From

24 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

there, the tree can be iteratively traversed by using the child or ancestor node IDs to descend or ascend the
menu system.

Unsolicited callbacks should be ignored, because they are generated by another client navigating the
menus. When switching between playback and record the menu should be closed and reopened starting
from the root since the tree changes as a function of camera state.

The example iPhone application has the full source code of the best practices method of using the menu
feature. It is highly recommended to use, or at least mimic that code.

Figure 8. Menu Tree Data Structures

FILE TRANSFER
Starting with camera firmware version 6.2.x, the RCP protocol supports transfer of files to and from the
camera via RCP. This is known as ‘rftp’ for RCP file transfer protocol. Storage is presented as a virtual file
system implemented partially in camera memory, and partially in SSD media. The ability to read files, write
files, delete files and get directory listings is provided.

25 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

FILE SYSTEM
The virtual file system comprises a group of folders and one file at the root folder ‘/’. Only certain file types
are permitted in each folder and the camera enforces this based on filename extension with one exception.
The /luts folder allows any extension name. Extension names are case sensitive.

VIRTUAL FILE SYSTEM

FOLDER FILES ACCESS TYPE DESCRIPTION

/ log Read only
The only file available is ‘log’. A camera log file for sending
to customer support.

/force_preset *.preset Read and write
Place a preset file in this folder and then re-boot the camera
to have preset automatically applied during boot.

/force_upgrade *.bin Read and write
Place an upgrade package file in this folder and then re-boot
the camera to perform a firmware upgrade

/looks *.RMD Read and write Look settings files

/luts Any extension Read and write Currently supports .cube and .cns LUT files.

/media SSD contents Read only
This maps to the mounted SSD. Allows transfer of recorded
media or other files out of the camera. Writing onto the SSD
is not permitted.

/overlays *.overlay Read and write Overlay settings files

/presets *.preset Read and write Preset files

/thumbnails *.rtn Read only

This folder contains thumbnails of the clips on the mounted
media. It is loaded when the SSD is mounted if there is
already content, and added to at the end of each subsequent
clip recording.

DIRECTORY LISTING FORMAT
The directory listing data is a list of file properties and filenames, in the format of a type 0 cList. The
properties are a bit mapping defined as below.

 1: the file is a directory.
 2: the file has read permissions.
 4: the file has write permissions.

A read only directory, such as /media, will have a property of 3. A file with both read and write permissions,
such as a .RMD, will have a property of 6.

The file names are all relative to the directory for the listing was requested.

THUMBNAIL FORMAT
Thumbnail images are created for each recording and are available in the /thumbnail virtual folder. They are
optimized for rendering on a camera monitor and therefore do not use the full 8 bit range for color. Each
color (red, green, blue) uses only the most significant 4 bits. The least significant 4 bits are 0s.

26 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

THUMBNAIL DATA FORMAT

ITEM SIZE (BYTES) DESCRIPTION

Signature 12
Identifies the file as a RED thumbnail =
“REDTHUMBNAIL”

Version 1 File format version, currently 3

Reserved 1 size 4 Size of the following reserved block

Reserved 1 data Reserved 1 size N/A

Reserved 2 size 4 Size of the following reserved block

Reserved 2 data Reserved 2 size N/A

Reserved 3 size 4 Size of the following reserved block

Reserved 3 data Reserved 3 size N/A

Image width 4 Width of image data in pixels

Image height 4 Height of image data in lines

Image data
Image width * 4 * Image
height

Image data in row major order. 4 bytes per pixel, 8 bits
per color, as ARGB (alpha, red, green, blue). Only the
upper 4 bits of the red, green, and blue are used.

FILE TRANSFER FUNCTIONS
FILE TRANSFER FUNCTIONS

FUNCTION USE WHEN

rcp_rftp_is_supported() Check if rftp operations are supported by the connected camera.

rcp_rftp_directory_lilsting()
Get a directory listing for the specified virtual path. The listing is returned as a raw

string by the status callback. Call c_list_import_from_string() to convert to a
cList.

rcp_rftp_send_file()
Send a file to the specified virtual path (including filename). The file may be
compressed or uncompressed. It is the application’s job to compress if desired.

rcp_rftp_retrieve_file()
Retrieve the specified filename path from the camera virtual file system. The file data is
returned by the status call back.

rcp_rftp_delete_file() Delete the specified filename path from the camera virtual file system.

rcp_rftp_abort_transfer() Halt the current file transfer (send or retrieve).

STATUS CALLBACK
Return data and status for rftp functions are all communicated via the callback function provided to the
connection creation call. File contents for a read or directory listing data are provided as data to the
callback. The callback is also called periodically to provide completion status of a transfer.

FILE COMPRESSION
Files being transferred to or from the camera may be compressed. When sending, the application makes this
decision and must include the compressed and uncompressed data size in the function call and indicate
whether it is compressed. When retrieving a file, the application can indicate whether the file may be
compressed and the status callback indicates if the camera did compress. Compression is not always
performed and the camera makes this choice. If the application indicates to not compress, the camera will
not.

27 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

The camera uses the Zlib library to compress and uncompress files. This library is not included in the API.
The application developer will need to get version 1.2.8 or later from www.zlib.net. However, since the
application can disallow compression, the inclusion of Zlib can be avoided.

USER METADATA
Starting with parameter set 6.50 the recording of user supplied metadata is supported. This data will be
recorded along with the camera metadata and can be retrieved with the REDLINE utility. Data is represented
as key:value pairs where the user can define their own keys. The key and value are both human readable
strings. Multiple keys can be active at one time and data can be accepted from multiple connections

The first step in using this feature is to query if it is supported on the connected camera. The API supplies

the call rcp_user_metadata_is_supported() for doing this.

Next, a data packet ID must be registered using rcp_user_metadata_register(). This function will
require an ID for a type of data packet, and the max length to reserve for a data packet of this type. It is
possible the registering will be denied based on the packet size request. The ID is a human readable string.
Because of limited memory allocated for metadata it is important to unregister an ID when no longer needed.

Typically, upon the application disconnecting from the camera. Use rcp_user_metadata_unregister()
to do this for each registered ID.

Metadata is then sent to the camera using rcp_user_metadata_send() providing the data as a human
readable string and the registered ID. The string must not be longer than the length specified at registration.

APPLICATION PROVIDED FUNCTIONS
To help keep the API as platform independent as possible, these helper functions must be implemented by
the application code. These are declared in the file rcp_api.h. The user has the option to place the
implementation c files anywhere they choose as long the linker can find them.

 rcp_malloc: Wrapper for memory allocations required by API.
 rcp_free: Wrapper for memory allocations required by API.
 rcp_mutex_lock: Wrapper for mutex lock required by the API. Note that the mutexes provided must be

recursive mutexes. That is, the same thread must be able to lock the same mutex multiple times before
unlocking it.

 rcp_mutex_unlock: Wrapper for mutex unlock required by the API.
 rcp_log: Wrapper for logging messages from the API. The application may choose to do nothing with

them, but the call must be provided.
 rcp_rand: Wrapper for getting pseudo-random integer required by the API.
 rcp_timestamp: Wrapper for getting system time in milliseconds.

28 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

http://www.zlib.net/

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

WRAPPER FOR JAVA
The RCP Java wrapper is provided to allow use of the RCP API by Java desktop (Windows and Linux) and
Android applications. It wraps the RCP API with Java code utilizing the Java Native Interface (JNI).

The Java wrapper is supplied in several folders under /rcp_api/java in the RCP SDK sources. It has its own
README.txt and auto generated html documentation. A small test function is also provided.

There is not a one to one correspondence of Java methods to API C functions and the method names are
different. Be sure to review the Java wrapper documentation.

SDK FOLDER STRUCTURE
The RCP SDK Source and Reference Applications zip archive contains the SDK sources and several example
applications. Starting with RCP set 6.50, the API sources are distributed as an amalgamation. This means
what were formerly many individual files are now merged into two source files, rcp_api.c and rcp_api.h. This
should greatly ease the task of updating an application project as only two files need to be updated. The
RCP core functions are still provided in the case the API is not being used. The top-level folder /rcp_sdk,
contains the API and supporting function source files. The /rcp_sdk folder can be copied elsewhere for use
in your own application development. The applications under the top level /examples folder reference the
/rcp_sdk folder, so the archive structure should be maintained as is when uncompressing to your machine.

SDK CODE FOLDER CONTENTS

SDK FOLDER CONTENTS

FOLDER DESCRIPTION

/rcp_sdk /rcp_api
Contains the amalgamation .c and .h files for the top level API and core
functions. This folder also contains the /doc folder with the auto generated
documentation and the /java folder for the Java interface wrapper.

/rcp_sdk /rcp_api/doc
Doxygen auto generated html files for the API. Start with a browser pointing
to index.html in this folder.

/rcp_sdk /rcp_api/java The Java wrapper, arranged in several folders.

/rcp_sdk /rcp_api/java/doc
Javadoc auto generated html files for the Java wrapper. Start with a
browser pointing to index.html in this folder.

/rcp_sdk /rcp_api/java/jni
.cpp and .h files providing a wrapper around the API that is callable from
Java classes in ./rcp_api/java/src/com/red/rcp

/rcp_sdk /rcp_api/java/test Java test application

/rcp_sdk /rcp_api/java/src/com/red/rcp Java interfaces and classes for access from Android or Java desktop

/rcp_sdk /rcp_core/rcp_parser
.c and .h files for the core parser module. Not used directly by the
application.

/rcp_sdk /rcp_core/base64
.c and .h files for the base64 encoder and decoder module. Not used
directly by the application.

/rcp_sdk /rcp_core/clist .cpp and .h files for the cList. The application will need to include clist.h

/rcp_sdk /rcp_core/decorated_string
.c and .h files for the decorated_string module. Not used directly by the
application.

/rcp_sdk /rcp_core/keys
.h file for #defines used to build key codes. Not required to be used by the
application.

/rcp_sdk /rcp_core/stringl .c and .h files for the stringl module. Not used directly by the application.

29 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

SDK FOLDER CONTENTS

FOLDER DESCRIPTION

/rcp_sdk/rcp_core/types Contains rcp_types_public.h which exposes the various enumerated values.

/examples/android Android Jelly Bean 4.2 (API level 17) app sources

/examples/ios iOS iPhone app sources

/examples/qt/api_example Source and executable (OS X and Windows) of PC based app using API

/examples/qt/core_example
Source and executable (OS X and Windows) of PC based app using only
low level core functions

/examples/qt/common Files used by both Qt applications

API BUILD CONFIGURATION
The RCP API can be customized at build time with the macro definition options below to reduce the overall
footprint. That is, both code size and memory usage can be reduced by disabling certain portions of the API
or changing the size of internally used buffers. Modifications to the options are made by editing the file
rcp_api_config.h

Note: The default settings enable everything and have properly sized buffers. Furthermore, the API has
primarily been tested only with the default settings. Take care when changing any of the settings below.

API BUILD OPTIONS

OPTION DEFAULT DESCRIPTION

RCP_API_ENABLE_LABELS
If disabled, there will be no support for parameter

labels. rcp_get_label() will always return
NULL.

RCP_API_ENABLE_STR_TO_ENUM

If disabled, there will be no support for converting

parameter ids (rcp_param_t) to strings, or vice

versa. rcp_get_name() will always return NULL

and rcp_get_id() will always return
RCP_PARAM_COUNT

RCP_API_ENABLE_CACHEING

If disabled, memory usage will be reduced by not
caching the value of every parameter in the API
itself. Note: this will increase the amount of traffic
between the application and camera.

RCP_API_ENABLE_NOTIFICATIONS

If disabled, notifications from the camera will not

be supported. rcp_notification_get(),
rcp_notification_timeout(), and
rcp_notification_response() will all do
nothing and return RCP_SUCCESS.

RCP_API_ENABLE_CLIP_LIST
If disabled, the clip list from the camera will not
be accessible through the API.

RCP_API_ENABLE_LOGGING
If disabled, no log messages from the API will be
generated.

RCP_API_ENABLE_DISCOVERY

If disabled, camera discovery will be disabled.
rcp_discovery_get_list() will always return

NULL and all other rcp_discovery_* calls will
do nothing.

30 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

API BUILD OPTIONS

OPTION DEFAULT DESCRIPTION

RCP_API_ENABLE_MENU If disabled, menu navigation will be disabled.

RCP_API_DISPLAY_STR_SIZE 100
Maximum size of any display string generated by
the API

RCP_API_LOG_LINE_SIZE 1024 Maximum size of any line sent to a logger function

RCP_API_PARSER_BUFFER_SIZE
RCP2_MAX_PACKET
_LENGTH

Size of internal buffer used to parse incoming
RCP packets. Note: if this is reduced in size, not
all packets are guaranteed to be handled
correctly.

RCP_API_OUTGOING_PACKET_BUFFER_SIZE
RCP2_MAX_PACKET
_LENGTH

Maximum size of any outgoing RCP packet.

RCP_API_SOURCE_NAME “API”
Up to 8 characters, RCP message source name
inserted by API in outgoing messages to a
camera.

RCP_PARAMETER_SET_MIN_VERSION_MAJOR 5
Minimum RCP parameter set version supported

RCP_PARAMETER_SET_MIN_VERSION_MINOR 0

RCP_PARAMETER_SET_VERSION_MAJOR 6
Maximum RCP parameter set version supported

RCP_PARAMETER_SET_VERSION_MINOR 0

BYPASSING THE API
Since the application owns the camera connection, the application can also be written to simply not use the
API. This might be useful for applications with limited memory or processing capacity, where the provided
API build options are insufficient to minimize the footprint. Only the RCP Core sources would be needed in
that case.

31 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

ACCESSING RCP IN THE CAMERA

VIA SERIAL PORT
Starting with camera firmware 3.3.x, the RCP is available through the CTRL connector (RS232 port):

 EPIC/SCARLET: The CTRL connector is directly on the rear of the camera body.
 DSMC2: The CTRL connector is available only on the following expanders: DSMC2 Base Expander,

DSMC2 Jetpack Expander, DSMC2 Jetpack SDI Expander, DSMC2 V-Lock I/O Expander, and the
DSMC2 REDVOLT® Expander.

The RCP is disabled by default, and must be enabled in the camera menu:

1. Go to Menu > Settings > Setup > Communication.
2. Select the Serial tab.
3. Select RED Command Protocol in the Ctrl Protocol drop-down menu.

Once selected, RED Command Protocol is persistent across boots.

Figure 9. Serial Port Configuration Menu.

The port settings are 115200 baud, 8N1 (8 bits, no parity, 1 start bit, no flow control).

The 4-PIN 00 LEMO®-TO-FLYING LEAD (P/N 790-0187) may be used for custom connections. See the RED
DSMC Operation Guide, section “CTRL (RS232 CONROL)” for details.

32 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

https://www.red.com/downloads
https://www.red.com/downloads

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

VIA GIGE
RCP is available through the GigE connector:

 EPIC/SCARLET: The GIG-E connector is available directly on the rear of the camera.
 DSMC2: The GIG-E connector is available only on the DSMC2 REDVOLT Expander and DSMC2 Jetpack

SDI Expander.

RCP must be enabled in the camera menu:

1. Go to Menu > Settings > Setup > Communication menu.
2. Select the Ethernet tab.
3. Select the Enable External Control check box.

Figure 10. Ethernet Configuration Menu.

Communication is allowed over TCP (port 1111). It is your responsibility to configure the camera, network,
and application properly. The camera can be configured for a fixed or dynamic IP address. A dynamic
discovery process is also supported.

The LEMO-to-CAT5E Ethernet Cable (9’) (P/N 790-0159) is required. See the RED DSMC Operation Guide,
section “GIG-E (Ethernet)” for details.

Check that the LAN indicator turns green when External Control is enabled and the camera is connected to a
network. If the LAN indicator turns yellow or red, contact a Bomb Squad representative to determine if the
camera needs updating.

As of firmware version 5.1.33, the camera does not support more than eight (8) simultaneous connections.
Your application should maintain just one. If the connection is lost, close down the connection before
opening a new one. Once the maximum number of connections is reached, the camera ignores additional
requests. Other than refusing the connection, the camera does not indicate why the connection is

33 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

https://www.red.com/downloads

 RED DIGITAL CINEMA 34 Parker | Irvine, CA 92618 | 949.206.7900 | Red.com

unsuccessful.

VIA WIFI

 EPIC/SCARLET: Starting with camera firmware 5.2.x, the RCP is available through the R.C.P. Bridge
module for EPIC and SCARLET cameras. The R.C.P. Bridge is automatically enabled if connected. The
R.C.P. Bridge can support one connection.

 DSMC2: All DSMC2 cameras have WiFi built in.

WiFi and the connection method must be enabled in the camera menu:

1. Go to Menu > Settings > Setup > Communication.
2. Select the WiFi tab.
3. Select the Enable WiFi check box (EPIC and SCARTLET only).
4. Select Ad-Hoc or Infrastructure mode

• EPIC/SCARLET: Set up the connection using the instructions from the R.C.P. Bridge Operation
Guide.

• DSMC2: Set up the connection using the instructions from the “WiFi” section in the operation guide
for your camera, available at www.red.com/downloads.

Figure 11. WiFi Configuration Menu.

34 | RED DIGITAL CINEMA | CONFIDENTIAL Form 910-0098, Rev H – ECO 011982 (05/17)

https://www.red.com/downloads/534097c926465a724b00208a
https://www.red.com/downloads/534097c926465a724b00208a
https://www.red.com/downloads?category=Documents&release=final

	RCP API Development Guide
	Table of Contents
	Disclaimer
	Copyright Notice
	Trademark Disclaimer

	Objective
	Scope
	Supporting Documents
	Conventions Used
	Introduction
	API Overview
	SDK Componenents
	Philosophy of Use—How to Use it Correctly
	Message Types
	RCP is Asynchronous
	Drive the UI from Current Messages
	The Camera Data is King
	The API Caches Data
	The API Manages Hardware Dependancies

	Physical Connection to Camera
	Camera Discovery
	Connection Creation
	Connection Error Conditions
	Callback Functions

	Data Management
	Data Types
	Setting/Getting Camera Parameters
	RCP Parameter Properties
	RCP Parameter Properties Structure

	Display Strings
	Decorated Strings
	Decoded Strings

	Lists
	RCP_GET_LIST()
	RCP_SET_LIST()
	REDCODE Example

	Composite Parameters
	Periodically Updated Parameters
	Parameter Status
	Notifications
	Menus

	File Transfer
	File System
	Directory Listing Format
	Thumbnail Format

	File Transfer Functions
	Status Callback
	File Compression
	User Metadata

	Application Provided Functions
	Wrapper for Java
	SDK Folder Structure
	API Build Configuration
	Bypassing the API
	Accessing RCP in the Camera
	Via Serial Port
	Via GigE
	Via WiFi

